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Abstract 

To check the upsurge of universal average temperature well below 2oC as projected by the 

Paris Agreement of 2016, renewable energy technologies like wind power must remain 

commercially feasible for enabling the green energy transition. The current study 

emphasizes the relevance of the Binary Particle Swarm Optimization method for solving 

wind farm layout selection problems. The relative efficiency of different transfer functions 

for attaining the minimum cost of energy has been examined. The research outcomes 

demonstrate the better competence of ‘S’ type transfer functions over the ‘V’ type ones for 

five terrain situations and wind-flow settings. 

Keywords: Wind Power, Wind Farm Design, Binary Particle Swarm Optimization, 

Transfer Function, Power Generation Cost 

JEL Classification: - 

 

 

1. Introduction 

Since universal power generation grew rapidly with the consolidation of industrial pursuits, 

the fossil fuel stashes are depleting at an exceptional rapidity [1]. Renewable power 

resources offer thriving substitutes when there is an expanding global trepidation for the 

insufficient reserve of fossil fuels and their drawbacks on the bionetwork [2]. Global 

renewable energy utilization and Wind Power Generation (WPG) segment have advanced 

exponentially since the introductory years of the twenty-first era [3]. Universal collective 

WPG capacity has grown from 20 GW in 2000 to 650 GW in 2019, estimated to reach 4042 

GW by 2050.  

Along with lower emission advantage, WPG farms are entailed to function economically 

[5]. Due to the relatively low capacity of the Wind Turbine (WT), a vast count of WTs is to 

be instated within a wind farm to accomplish the capability of traditional power plants. 
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Wind farm design should be prudently evaluated for selecting the most acceptable option 

that delivers the best possible profit for definite capital spending [6]. Several research 

works have been executed to resolve the concerns allied to Wind Farm Layout Optimization 

(WFLO). 

Initially, in 1994, WFLO was explored with a Genetic Algorithm (GA) [7]. Since the mid-

2000s, GA has been extensively applied to WFLO problems for grid-like discrete as well 

as coordinate-based continuous representations of wind farms [8]. Grady et al. (2005) [8] 

employed GA to find the optimum location of WTs for maximizing the power generation 

capacity whereas reducing the number of WTs and the land usage. Huang (2007) [9] 

proposed a distributed GA methodology to amplify the yearly profit for bigger wind farms. 

Elkinton et al. (2008) [10] discussed the application of five diverse kinds of optimization 

techniques for offshore WFLO. An innovative coding tactic was employed for GA-based 

WFLO [11].  

Chen et al. (2015) [12] employed multi-objective GA for enhancing the power yield while 

reducing the overall cost of wind power generation farms. Yin et al. (2017) [13] suggested 

an enhanced GA methodology to reduce the cost of power generation subjected to the 

uncertainty of wind flow. Particle Swarm Optimization (PSO) algorithm with the Gaussian 

mutation has been applied for WFLO [14]. Chowdhury et al. (2012) [15] attempted 

unrestricted WFLO employing constrained PSO.  

The BPSO technique with time-varying acceleration coefficients was employed to 

maximize the generation capacity for a minimum investment [16]. Hou et al. (2016) [17] 

proposed PSO with multiple adaptive approaches to maximize the generated power. Pillai 

et al. (2017) [18] engaged both GA and PSO for reducing the Levelized Cost of power 

generation at the Middelgrunden wind farm in Denmark. PSO is an AI-enabled 

optimization technique that searches for the most optimal solution by communicating 

knowledge about universal or local best solutions [19].  

Apart from GA and PSO, Monte Carlo simulation has been applied to increase the power 

output while minimizing the total cost [20]. A Simulated Annealing algorithm has been 

utilized by Rivas et al. (2009) [21] for offshore WFLO. DuPont et al. (2016) [22] engaged 

the Pattern Search algorithm to WFLO with steady and inconsistent wind patterns. The 

heuristic methodology is preferred over mathematical programming because of the 

multifaceted nature of WPG farm design problems [23, 24]. Although the BPSO technique 

has been used in WFLO, the relative effect of different transfer functions applied in BPSO 

has not yet been explored for wind farm design purposes.  

The current study has focused on the BPSO technique for the WFLO problem. A grid-like 

structure of wind farms has been taken into consideration for utilizing the binary coding 

capability of BPSO. Four ‘S’ and four ‘V’-type transfer functions have been employed 

simultaneously to evaluate their relative effectivity in finding the least possible power 

generation cost for five arbitrarily selected terrain and wind flow conditions. This paper has 
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been coordinated as follows. The problem presentation, accessible in segment 2, furnishes 

a comprehensive depiction of the objective function. The optimization algorithm, ‘S’, and 

‘V’ type transfer function-related details are obtainable in segment 3. Results and related 

discussions are accessible in segment 4. Conclusion and future prospect-related discussions 

are available in segment 5. 

 

2. Problem Presentation 

Objective Function Formulation 

The rationale of the current research is to optimize the positioning of WTs by minimizing 

the Cost of Energy (CE). This WFLO problem is framed through wind flow patterns, wake 

effect, WT parameters, and allied power generation factors. The present study has engaged 

the cost function, five arbitrarily chosen terrain conditions, and wind flow models as the 

benchmarking evaluation setup for assessing the comparative effectiveness of eight 

different transfer functions of BPSO following [25][26]. The objective function is 

formulated as: 

 𝐶𝐸 =
{𝛾∗𝛿}+(𝐶𝑜𝑋)

(1−(1+𝑘)−𝑝) 𝑘⁄
∗

1

8760∗𝐸
+

0.1

𝑋
 (1) 

 𝛾 = 𝐶𝐴𝑋 + 𝐶𝐵𝑓𝑙𝑜𝑜𝑟 (
𝑋

𝑌
) (2) 

 𝛿 =
2

3
+

1

3
𝑒−0.00174𝑋2

 (3) 

 

Where CA symbolizes the outlay of a WT. CB represents the expense of a sub-station. X 

signifies the tally of WTs in a WPG farm, and Y stands for WT per sub-station i.e., 30. Co 

indicates the operational and maintenance cost per annum. E denotes the power yield of the 

WPG farm. k symbolizes the percentage of interest. p signifies the lifespan of the wind 

farm.  

The latter term (0.1/X) recompenses the layouts with a higher WT count to make the most 

of the wind farm's power output. The intent of the current work is to curtail the CE. The 

goal function is constrained within the defined limits of the terrain dimensions, and the gap 

between two adjacent WTs must be at least eight times the WT radius to minimize the wake 

loss. 

If you use subsections, please follow the draft regulations: if you start right after the section 

declaration, just place the subsection on the next paragraph, if you have a content for the 

section and then insert a subsection leave 1 (one) empty paragraph above and below the 

subsection (see below). 
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3. Optimization Algorithm 

Binary Particle Optimization Algorithm (BPSOA) 

Due to the complex nature of wind flow scenarios, a heuristic methodology is essential to 

be adapted for WFLO. In the current research work, BPSOA has been considered for 

minimizing the CE in the current study. The optimization algorithm has been discussed in 

the subsequent sub-sections.  

PSO imitates the societal activities of birds, bees, or a shoal of fishes. Every member of the 

swarm is signified by a vector in the search domain. The algorithm regulates the updating 

strategy of the swiftness of a swarm member known as a ‘particle’ correspondingly. The 

PSO procedure repeats up to a preset number of counts or till an acceptable level of error 

is attained [27].  

A ‘particle’ can be categorized as a bit sequence in BPSO. The spot of a ‘particle’ can be 

revised by swapping between 0 and 1 according to the velocity [28].  

For the nth bit of mth particle, the velocity vmn is computed as per Eq. (4) and (5), 

 𝑣𝑚𝑛 = 𝑤𝑣𝑚𝑛 + 𝜏 (4) 

 𝜏 = 𝑐1𝑟1𝑛(𝑝𝑚𝑛 − 𝑥𝑚𝑛) + 𝑐2𝑟2𝑛(𝑔𝑛 − 𝑥𝑚𝑛) (5) 

where w signifies the inertia weight with a value ranging between 0 and 1. w can be 

computed according to a linearly declining technique as per Eq. (6). 

 𝑤 =  𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝑘

𝐿 
 (6) 

where wmax and wmin are the supreme and least confines of inertia weight respectively. k 

stands for the current counts of repetition and L denotes the maximum count of repetitions. 

c1 and c2 are non-negative acceleration parameters. r1n and r2n are arbitrary variables 

following uniform distribution with values ranging between 0 and 1.  

Pmn indicates the nth bit of the individual preeminent location of the mth particle. gn 

represents the nth bit of the universal paramount location.  

The transfer function which is used to update the value of the bit has been defined in Eq. 

(7). 

 𝑣𝑚𝑛 =  
1

1+𝑒−𝑣𝑚𝑛
 (7) 

The value of the bit is updated as per Eq. (8). 

 𝑥𝑚𝑛 = {
1, 𝑖𝑓 𝑟𝑎𝑛𝑑() ≤ 𝑠(𝑣𝑚𝑛)
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

Where rand() arbitrarily generates a number ranging between 0 and 1 with uniform 

distribution [28].  
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The algorithm of the proposed BPSO has been presented in Table 1, where present 

locations, individual best locations, and universal best locations have been signified as xm 

= (xm1, ……, xmn), pm = (pm1, ……, pmn) and g = (g1, ……, gn) respectively. 

Arbitrarily create a preliminary population 

Arbitrarily create the primary velocities in the interior of the velocity limits 

repeat 

for 𝐦 = 1 to Populace Limit do 

if f (𝐱𝐦) < f (𝐩𝐦)  then 𝐩𝐦 =  𝐱𝐦; 

if f (𝐩𝐦) < f (𝐠)  then 𝐠 =  𝐩𝐦; 

end 

   for 𝐦 = 1 to Populace Limit do 

      for 𝐧 = 1 to Particle Bit Limit do 

       Compute 𝐰 with Eq. (6) 

       Revise velocity using Eq. (4) and (5) 

       Revise location with Eq. (7) and Eq. (8) 

       end 

   end 

until the Ending criteria are attained 

Table 1. Algorithm for BPSO [28] 

The transfer function depicts the possibility of altering location vector particles between 0 

and 1.  

The transfer function must be capable enough to offer a superior possibility of altering the 

location for a sizeable amount of particle velocity. It must also tender a minor possibility 

of shifting the location for a lesser quantity of particle velocity [29] [30].  
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Serial 

No. 
Transfer Function 

𝑆1 𝑆(𝑥) =
1

1 + 𝑒−2𝑥
 

𝑆2 𝑆(𝑥) =
1

1 + 𝑒−𝑥
 

𝑆3 𝑆(𝑥) =
1

1 + 𝑒−
𝑥
2

 

𝑆4 𝑆(𝑥) =
1

1 + 𝑒−
𝑥
3

 

Table 2. ‘S’ Type Transfer Functions [29] 

Serial 

No. 
Transfer Function 

𝑉1 

𝑆(𝑥) = |erf (
√𝜋

2
𝑥))| = 

|
√2

𝜋
∫ 𝑒−𝑡2

𝑑𝑡
√𝜋

2
𝑥

0
| 

𝑉2 𝑆(𝑥) = |tanh(𝑥)| 

𝑉3 𝑆(𝑥) = |
𝑥

√1 + 𝑥2
| 

𝑉4 𝑆(𝑥) = |
2

𝜋
𝑎𝑟𝑐 tan (

𝜋

2
𝑥)| 

Table 3. ‘V’ Type Transfer Functions [29] 

These transfer functions can be classified as ‘S’-shaped and ‘V’-shaped according to their 

graphical plots [31].  

Four ‘S’ and four ‘V’ type transfer functions used for BPSO have been mentioned in Tables 

2 and 3, respectively. Their graphical plots have been shown in Figs. 1 and 2 

correspondingly. 
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Figure 1. Plots of ‘S’ Type Transfer Functions [31] 

 

 

Figure 2. Plots of ‘V’ Type Transfer Functions [31] 

The transfer functions engaged for BPSO are influential in providing the appropriate 

probability according to the absolute velocity of a particle [30]. The choice of the competent 

transfer function can facilitate the decision-makers to explore the search domain (terrain) 

most efficiently and locate the best possible emplacement of the WTs in a WPG farm for 

achieving the least possible CE [32]-[35].  
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4. Results and Discussion 

For appraising the proportional performance of ‘S’ and ‘V’ type transfer functions for the 

WFLO problem, a similar CE function, described in section 2, has been employed. CE has 

been measured in USD/kWh. A terrain condition considered by Wilson et al. (2018) is put 

into operation as a benchmark terrain situation in contemporary research and it is shown in 

Fig. 3. 

 

Figure 3. Considered Terrain Setting 

The rectangular terrain of length and breadth of 9240 m and 6545 m respectively has been 

deemed in the existing study. The area shown in blue is available for positioning WTs 

whereas the area shown in pink indicates the obstructions inside the terrain. WTs cannot be 

placed within the obstruction area. The airflow scenario spread across directional angles 

(shown as 0 to 345) held in the present work is graphically represented in Fig. 4 [36]-[40]. 

 

Figure 4. Considered Airflow Condition 
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The parameter setting for the WFLO problem has been presented in Table 4, and 

experimentation outcomes have been displayed in Fig. 5. The minimum CE has been 

specified in bold form. 

Parameter Considered Value 

Operational Charge USD 20,000 

c1 2 

c2 2 

Diameter of WT 77m 

Number of 

Iterations 

50 

Operative Period 20 Years 

Population Size 20 

Rate of Interest 3% 

Rated Power 1500 kW 

Sub-Station Outlay USD 8,000,000 

vmax 6 

w 2 

wmax 0.9 

wmin 0.4 

WT Outlay USD 750,000 

Table 4. Parameter Settings 
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Figure 5. Comparison of Optimized Costs of Energy 

Transfer 

Function 

Cost of Energy 

(USD/kWh) 

𝑆1 0.00143 

𝑆2 0.00137 

𝑆3 0.00133 

𝑆4 0.00131 

𝑉1 0.00320 

𝑉2 0.00290 

𝑉3 0.00230 

𝑉4 0.00190 

Table 5. Optimized Costs of Energy 
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Each optimization run has been iterated 50 times for every chosen scenario and transfer 

function. The plots shown in Fig.5 depict that ‘S’ type transfer functions offer more optimal 

wind power generation cost when compared to corresponding ‘V’ type transfer functions. 

Moreover, the ‘S4’ type transfer function, among all the mentioned transfer functions, has 

presented the minimal CE for every wind flow scenario. The most optimal CE that has been 

attained in the current WFLO problem is 0.00131 USD/kWh. The accepted error for 

estimating the CE is less than 0.00001 USD/kWh for the present work [41]-[45]. 

 

5. Conclusions 

The BPSO-based WFLO methodology presented in the current work has offered an 

economical and prompt technique to assess the optimum generation cost for a given cost 

function and five arbitrarily chosen wind flow scenarios taken into account in the 22nd 

Genetic and Evolutionary Computation Conference [25]. Both types of transfer functions 

have been considered for changing the particle velocity for BPSO. The research outcomes 

demonstrate the suitability of S-type transfer functions over V-type ones in finding the 

optimal wind power generation cost. The ‘S4’ function, mentioned in Table 2, is the most 

efficient transfer function for exploring the randomly generated layouts to search for the 

best possible positioning of the WTs inside the wind farm with the most optimal WPG cost 

per kWh. This study will initiate innovative possibilities for enhancing the plan of the WPG 

farms to find the least probable CE for several terrains and wind flow conditions using AI 

methods like the PSO algorithm. 

 

 

Acknowledgment 

The first author admits the pecuniary grant provided by the TEQIP section of Jadavpur 

University, Kolkata, India to support the present study. 

 

 

References 

[1] Enerdata, "Global Energy Statistical Yearbook," 2020. [Online]. Available:  

https://yearbook.enerdata.net/ 

[2] P. K. Chaurasiya, V. Warudkar, and S. Ahmed, "Wind energy development and policy 

in India: A review," Energy Strategy Reviews, vol. 24, pp. 342-357, 2019. doi: 

10.1016/j.esr.2019.04.010. 



Journal of Information Systems & Operations Management, Vol. 17.1, May 2023 
 

Pag. 44 / 265 

[3] BP, "Statistical Review of World Energy," 2020. [Online] Available: 

https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-

energy.html 

[4] Global Wind Energy Council, "Global Wind Energy Outlook,” 2014. [Online] 

Available: http://www.gwec.net/wp-content/uploads/2014/10/GWEO2014_WEB.pdf 

[5] G. Nicholas, T. Howard, H. Long, J. Wheals, and R. S. Dwyer-Joyce, "Measurement 

of roller load, load variation, and lubrication in a wind turbine gearbox high speed shaft 

bearing in the field,” Tribology International, vol. 148, p. 106322, 2020. 

[6] J. S. González, A. G. Gonzalez Rodriguez, J. C. Mora, J. R. Santos, and M. B. Payan, 

"Optimization of wind farm turbines layout using an evolutive algorithm," Renewable 

Energy, vol. 35, no. 8, pp. 1671–1681, 2010. 

[7] G. Mosetti, C. Poloni, and B. Diviacco, "Optimization of wind turbine positioning in 

large windfarms by means of a genetic algorithm," Journal of Wind Engineering and 

Industrial Aerodynamics, vol. 51, no. 1, pp. 105–116, 1994. 

[8] S. A. Grady, M. Y. Hussaini, and M. M. Abdullah, "Placement of wind turbines using 

genetic algorithms,” Renewable Energy, vol. 30, no. 2, pp. 259–270, 2005. 

[9] H. S. Huang, "Distributed Genetic Algorithm for Optimization of Wind Farm Annual 

Profits," in The 14th International Conference on Intelligent System Applications to 

Power Systems, Kaohsiung, Taiwan, 2007. 

[10] C. N. Elkinton, J. F. Manwell, and J. G. McGowan, "Algorithms for Offshore Wind 

Farm Layout Optimization," Wind Engineering, vol. 32, no. 1, pp. 67-84, 2008. 

[11] A. Emami and P. Noghreh, "New approach on optimization in placement of wind 

turbines within wind farm by genetic algorithms," Renewable Energy, vol. 35, no. 7, pp. 

1559–1564, 2010. 

[12] Y. Chen, H. Li, B. He, P. Wang, and K. Jin, "Multi-objective genetic algorithm based 

innovative wind farm layout optimization method," Energy Conversion and Management, 

vol. 105, pp. 1318–1327, 2015. 

[13] P.-Y. Yin, T.-H. Wu, and P.-Y. Hsu, "Risk management of wind farm micro-siting 

using an enhanced genetic algorithm with simulation optimization", Renewable Energy, 

vol. 107, pp. 508–521, 2017. 

[14] C. Wan, J. Wang, G. Yang, and X. Zhang, "Particle swarm optimization based on 

Gaussian mutation and its application to wind farm micro-siting," in 49th IEEE 

Conference on Decision and Control (CDC), Atlanta, GA, USA, 2010.  

[15] S. Chowdhury, J. Zhang, A. Messac, and L. Castillo, "Unrestricted wind farm layout 

optimization (UWFLO): Investigating key factors influencing the maximum power 

generation," Renewable Energy, vol. 38, no. 1, pp. 16-30, 2012. 



Journal of Information Systems & Operations Management, Vol. 17.1, May 2023 
 

Pag. 45 / 265 

[16] S. Pookpunt and W. Ongsakul, "Optimal placement of wind turbines within wind 

farm using binary particle swarm optimization with time-varying acceleration 

coefficients," Renewable Energy, vol. 55, pp. 266–276, 2013. 

[17] P. Hou, W. Hu, C. Chen, M. Soltani, and Z. Chen, "Optimization of offshore wind 

farm layout in restricted zones," Energy, vol. 113, pp. 487-496, 2016. 

[18] A. C. Pillai, J. Chick, M. Khorasanchi, S. Barbouchi, and L. Johanning, "Application 

of an offshore wind farm layout optimization methodology at Middelgrunden wind farm," 

Ocean Engineering, vol. 139, pp. 287-297, 2017. 

[19] A. Duggirala, R. K. Jana, R. V. Shesu, and P. Bhattacharjee, "Design optimization of 

deep groove ball bearings using crowding distance particle swarm optimization," 

Sādhanā, vol. 43, no. 1, 2018. 

[20] G. Marmidis, S. Lazarou, and E. Pyrgioti, "Optimal placement of wind turbines in a 

wind park using Monte Carlo simulation," Renewable Energy, vol. 33, no. 7, pp. 1455–

1460, 2008. 

[21] R. A. Rivas, J. Clausen, K. S. Hansen, and L. E. Jensen, "Solving the Turbine 

Positioning Problem for Large Offshore Wind Farms by Simulated Annealing," Wind 

Engineering, vol. 33, no. 3, pp. 287–297, 2009. 

[22] B. DuPont, J. Cagan, and P. Moriarty, "An advanced modeling system for 

optimization of wind farm layout and wind turbine sizing using a multi-level extended 

pattern search algorithm," Energy, vol. 106, pp. 802–814, 2016. 

[23] J. Serrano González, M. Burgos Payán, J. M. R. Santos, and F. González-Longatt, "A 

review and recent developments in the optimal wind-turbine micro-siting problem," 

Renewable and Sustainable Energy Reviews, vol. 30, pp. 133-144, 2014. 

[24] K. Yang, G. Kwak, K. Cho, and J. Huh, "Wind farm layout optimization for wake 

effect uniformity," Energy, vol. 183, pp. 983-995, 2019. 

[25] D. Wilson, S. Rodrigues, C. Segura, I. Loshchilov, F. Hutter, G. L. Buenfil, A. 

Kheiri, E. Keedwell, M. Ocampo-Pineda, E. Özcan, S. I. V. Peña, B. Goldman, S. B. 

Rionda, A. Hernández-Aguirre, K. Veeramachaneni, and S. Cussat-Blanc, "Evolutionary 

computation for wind farm layout optimization," Renewable Energy, vol. 126, pp. 681-

691, 2018. 

[26] D. Wilson, S. Cussat-Blanc, S. Rodriguez, and K. Veeramachaneni, "WindFLO," 

[Online]. Available: 

https://github.com/d9w/WindFLO/blob/master/Wind%20Competition/2015/slides_GECC

O.pdf 

[27] M. A. Khanesar, M. Teshnehlab, and M. A. Shoorehdeli, "A novel binary particle 

swarm optimization," in Mediterranean Conference on Control & Automation, 2007. 



Journal of Information Systems & Operations Management, Vol. 17.1, May 2023 
 

Pag. 46 / 265 

[28] J. Liu, Y. Mei, and X. Li, "An Analysis of the Inertia Weight Parameter for Binary 

Particle Swarm Optimization," IEEE Transactions on Evolutionary Computation, vol. 20, 

no. 5, pp. 666–681, 2016. 

[29] S. Mirjalili, S. M. Hashim, G. Taherzadeh, S. Z. Mirjalili, and S. Salehi, "A Study of 

Different Transfer Functions for Binary Version of Particle Swarm Optimization," in 

International Conference on Genetic and Evolutionary Methods, 2011.  

[30] S. Saremi, S. Mirjalili, and A. Lewis, “How important is a transfer function in 

discrete heuristic algorithms,” Neural Computing and Applications, vol. 26, no. 3, pp. 

625–640, 2014. 

[31] S. Mirjalili, and A. Lewis, “S-shaped versus V-shaped transfer functions for binary 

Particle Swarm Optimization,” Swarm and Evolutionary Computation, vol. 9, pp. 1–14, 

2013. 

[32] P. Bhattacharjee, R. K. Jana, and S. Bhattacharya, “A Relative Analysis of Genetic 

Algorithm and Binary Particle Swarm Optimization for Finding the Optimal Cost of 

Wind Power Generation in Tirumala Area of India,” ITM Web of Conferences, vol. 40, p. 

03016, 2021, doi: 10.1051/itmconf/20214003016. 

[33] P. Bhattacharjee, R. K. Jana, and S. Bhattacharya, “Boosting the annual profit of an 

offshore wind farm in India with a bio-inspired meta-heuristic scheme,” Environmental 

Challenges, vol. 9, p. 100642, Dec. 2022, doi: 10.1016/j.envc.2022.100642. 

[34] P. Bhattacharjee, R. K. Jana, and S. Bhattacharya, “Application of Metaheuristic 

Techniques for Enhancing the Financial Profitability of Wind Power Generation 

Systems,” Studies in Computational Intelligence, pp. 127–147, Dec. 2022, doi: 

10.1007/978-3-031-16832-1_7. 

[35] J. Liu, Y. Mei, and X. Li, “An Analysis of the Inertia Weight Parameter for Binary 

Particle Swarm Optimization,” IEEE Transactions on Evolutionary Computation, vol. 20, 

no. 5, pp. 666–681, Oct. 2016, doi: 10.1109/tevc.2015.2503422. 

[36] M. Verma, H. K. Ghritlahre, P. K. Chaurasiya, S. Ahmed, and S. Bajpai, 

“Optimization of wind power plant sizing and placement by the application of multi-

objective genetic algorithm (GA) in Madhya Pradesh, India,” Sustainable Computing: 

Informatics and Systems, vol. 32, p. 100606, Dec. 2021, doi: 

10.1016/j.suscom.2021.100606. 

[37] S. Rehman and S. S. A. Ali, “Wind farm layout design using modified particle swarm 

optimization algorithm,” in IREC2015 The Sixth International Renewable Energy 

Congress, Mar. 2015, doi: 10.1109/irec.2015.7110915. 

[38] Z. Liu, J. Peng, X. Hua, and Z. Zhu, “Wind farm optimization considering non-

uniformly distributed turbulence intensity,” Sustainable Energy Technologies and 

Assessments, vol. 43, p. 100970, Feb. 2021, doi: 10.1016/j.seta.2020.100970. 



Journal of Information Systems & Operations Management, Vol. 17.1, May 2023 
 

Pag. 47 / 265 

[39] A. G. Conzalez-Rodriguez, J. Serrano-Conzalez, J. M. Riquelme-Santos, M. Burgos-

Payán, J. Castro-Mora, and S. A. Persan, “Global Optimization of Wind Farms Using 

Evolutive Algorithms,” Wind Power Systems, pp. 53–104, 2010, doi: 10.1007/978-3-642-

13250-6_3. 

[40] F. Daqaq, R. Ellaia, M. Ouassaid, H. M. Zawbaa, and S. Kamel, “Enhanced Chaotic 

Manta Ray Foraging Algorithm for Function Optimization and Optimal Wind Farm 

Layout Problem,” IEEE Access, vol. 10, pp. 78345–78369, 2022, doi: 

10.1109/access.2022.3193233. 

[41] J. S. Gonzalez, M. B. Payan, and J. M. Riquelme-Santos, “Optimization of Wind 

Farm Turbine Layout Including Decision Making Under Risk,” IEEE Systems Journal, 

vol. 6, no. 1, pp. 94–102, Mar. 2012, doi: 10.1109/jsyst.2011.2163007. 

[42] J.-F. Herbert-Acero, J.-R. Franco-Acevedo, M. Valenzuela-Rendón, and O. Probst-

Oleszewski, “Linear Wind Farm Layout Optimization through Computational 

Intelligence,” Lecture Notes in Computer Science, pp. 692–703, 2009, doi: 10.1007/978-

3-642-05258-3_61. 

[43] M. K. Singla, M. H. Hassan, J. Gupta, F. Jurado, P. Nijhawan, and S. Kamel, “An 

enhanced efficient optimization algorithm (EINFO) for accurate extraction of proton 

exchange membrane fuel cell parameters,” Soft Computing, Apr. 2023, doi: 

10.1007/s00500-023-08092-1. 

[44] C. Wan, J. Wang, G. Yang, H. Gu, and X. Zhang, “Wind farm micro-siting by 

Gaussian particle swarm optimization with local search strategy,” Renewable Energy, vol. 

48, pp. 276–286, Dec. 2012, doi: 10.1016/j.renene.2012.04.052. 

[45] N. Naritsak and K. Asawarungsaengkul, “A Memory Integrated Artificial Bee 

Colony Algorithm with Local Search for Vehicle Routing Problem with Backhauls and 

Time Windows,” KMUTNB International Journal of Applied Science and Technology, 

Mar. 2018, doi: 10.14416/j.ijast.2018.03.001. 


	(2023.05) Coperta 1
	1_JISOM 17.1 (final) - Front
	2_JISOM 17.1 (final) - Cuprins+Continut
	(2023.05) Coperta 4
	Blank Page

